Numerical Simulations of the Steady Euler Equations on Unstructured Grids
نویسندگان
چکیده
This thesis is concerned with effective and robust numerical schemes for solving steady Euler equations. For solving the nonlinear system resulting from the discretization of the steady Euler equations, we employ a standard Newton method as the outer iterative scheme and a linear multigrid method as the inner iterative scheme with the block lower-upper symmetric Gauss-Seidel iteration as its smoother. The Jacobian matrix of the Newton-iteration is regularized by the local residual, instead of using the commonly adopted time-stepping relaxation technique based on the local CFL number. The local Jacobian matrix of the numerical fluxes are computed by using the numerical differentiation, which can significantly simplify the implementations by comparing with the manually derived approximate derivatives. In the reconstruction step, the linear reconstruction and the quadratic reconstruction are studied respectively. For the linear reconstruction, the approximate polynomial in each cell is obtained by using the WENO reconstruction method. The numerical results show that the algorithm works very well with the WENO reconstruction. Compared with the resutls given by using the Venkatakrishnan limiter, the WENO reconstruction method gives superior convergence order, and nonoscillatory and sharp shock profiles. Although the WENO method works very well for the linear case, the convergence to the steady state of the algorithm is affected if the WENO method is extended to the quadratic case directly. So for the quadratic reconstruction, a new hierarchical WENO reconstruction method is introduced to improve the convergence to steady state and also to preserve the formal order of accuracy. The efforts are made to balance the convergence order of the numerical
منابع مشابه
A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملPressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملAdaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid
Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roes flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, acc...
متن کاملA robust WENO type finite volume solver for steady Euler equations on unstructured grids
A recent work of Li et al. [Numer. Math. Theor. Meth. Appl., Vol. 1, pp. 92-112(2008)] proposed a finite volume solver to solve 2D steady Euler equations. Although the Venkatakrishnan limiter is used to prevent the non-physical oscillations nearby the shock region, the overshoot or undershoot phenomenon can still be observed. Moreover, the numerical accuracy is degraded by using Venkatakrishnan...
متن کاملAdaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid
Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roe's flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009